S12 ABSTRACTS

ABSTRACT HAS BEEN MOVED TO A POSTER PRESENTATION AT THE REQUEST OF THE AUTHORS

ABSTRACTS S13

ACCESS TO REMOTELY CONTROLLED PRODUCTION OF 86Y USING AQUEOUS TARGET MATRICES AS ALTERNATIVE TO SOLID STATE TARGETRY

A.T.J. Vogg, B. Neumaier, W. Scheel, S.N. Reske. *Nuklearmedizin, Universitatsklinikum Ulm, Ulm, Germany.*

Aim

In the recent years other – mostly metallic – radionuclides for PET gained more and more interest. However, for production of these alternative positron emitters the vast majority of them affords solid targets in form of metal foils, oxide or salt pellets [1, 2] which can not be operated by an automated processing. The disadvantages are: 1st, manual cyclotron intervention is practically unsuited for daily routine radionuclide production and 2nd the operating staff receives high radiation doses from the activated target. An alternative could be the irradiation of aqueous salts of target isotopes, allowing automated target operation. The major requirements are: I.) thermal stability of the dissolved compound, II.) avoidance of counter ions containing nuclides which produce long-lived radionuclides under irradiation and III.) high solubility of the salt in the aqueous matrix. Here we report the possibility of this alternative radionuclide production concept by production of ^{86}Y (cf. [3, 4]), generated by irradiation of strontium nitrate dissolved in water.

Method

A "Nitrogen-13 target" liquid target was filled with a $Sr(NO₃)$, solution (natural isotopic composition, 81 % of maximum solubility) and irradiated with 16 MeV protons for 60 minutes at 6 µA. After end of bombardment (EOB) the target content was delivered to a 25 mL glass vial containing phosphate buffer pH 7. Then, the target was flushed 5 times by a 25 mM HNO₃ solution collected in the same vial resulting in a total final volume of about 16 mL. Two aliquots (10 and 100 μ L) were taken and measured several times applying gamma spectrometry (HPGe detector). Nuclear decay and emission data were taken from Ref. [5].

Results

Produced activities of Y isotopes at EOB were: ^{88}Y (1.2 MBq), ^{87}Y (4.5 MBq), ^{87}Y (16.8 MBq), ${}^{86}Y$ (21.6 MBq), ${}^{86}Y$ (46.7 MBq), ${}^{85}Y$ (<3.2 MBq), ${}^{85}Y$ (not detectable), ${}^{84m}Y$ (<7.8 MBq). In case the beam upscaling for the described target system would work without physico-chemical complications, PET nuclide ^{86}Y would be produced in activities of more than 4 GBq by proton irradiation of aqueous dissolved ${}^{86}Sr(NO_3)$, applying the parameters: 96.3 % isotopic enrichment of 86Sr, 16 MeV protons, 30 µA beam current, 5 h irradiation time. Radioisotopic activity fraction (among Y radionuclides) will rise from 52 % (EOB) to 88 % (3 h later). Formed ¹³N, ¹⁸F, ¹¹C as well as Sr and Rb radionuclides can be chemically removed during workup of the irradiated target solution for ${}^{86}Y$ purification and ⁸⁶Sr recovery [4]. Since the used target was not tight enough regarding cooling water, we recommend to use the "high yield F-18 target" from GE-MS instead with differently designed loading.

Thus, demonstrated by the reported experiment, an opportunity is opened to produce radionuclides, which in the past were only accessible by solid target production technology.

[1] Pagani M., Stone-Elander S., Larsson S.A., Eur. J. Nucl. Med. 24, 1301 (1997).

[2] Nickles R.J., J. Label. Compd. Radiopharm. 46, 1 (2003).

[3] Rösch F., Qaim S.M., Stöcklin G., Radiochim. Acta 61, 1 (1993).

[4] Rösch F., Qaim S.M., Stöcklin G., Appl. Radiat. Isot. 44, 677 (1993).

[5] Chu S.Y.F., Ekström L.P., Firestone R.B., WWW Table of Radioactive Isotopes, database version 2/28/1999 from URL http://nucleardata.nuclear.lu.se/nucleardata/toi/

Keywords: Targetry, Y-86-Production, Gamma Spectrometry

S14 ABSTRACTS

A SERIES OF HYDRATED HEXAGONAL TUNGSTEN BRONZE SORBENTS FOR USE IN THE SEPARATION OF RADIOMETAL IONS

S.V. Smith,¹ S.J. Kennedy,² A. Fuchs.¹

1 Materials and Engineering Science, ANSTO, Menai, NSW, Australia; 2 Bragg Institute, ANSTO, Sydney, NSW, Australia.

There is growing interest in the potential of novel inorganic ion exchangers for radioisotope separation. Hydrated hexagonal tungsten bronze oxides show potential as ion exchangers and for treatment of radioactive waste.¹⁻³ A series of hydrated molybdenum doped hexagonal tungsten bronze (HTB, Mo_{10} -HTB, Mo_{20} -HTB) were synthesized and characterized by X-ray (XRD) and neutron (NPD) powder diffraction. The mechanism of metal ion binding was investigated under various conditions to probe their potential for radioisotope separation.

The sorbents were synthesized using hydrothermal methods. XRD patterns were collected using a 0.02° step size in the 2*q* range 10° - 80° using a Scintag II diffractometer. NPD patterns were collected on the medium-resolution powder diffractometer (MRPD) at HIFAR (High-Flux Australian Reactor) over 2q range 4° - 140° with a step size of 0.1° .⁵ The binding affinity (K_d [mL/g]) of the sorbents for a range of radiometal ions (e.g. $^{201}Tl^+$, $^{201}Pb^{2+}$, $^{194}Gd^{3+}$, $^{57}Co^{2+}$, $^{141}Ce^{4+}$) was determined under various acid and electrolyte conditions (e.g. $0.1 - 8.0$ M HCl, H_2SO_4 HNO₃, $0.1 - 1.0$) M, NaCl, MgCl₂, BaCl₂, KCl, KNO₃, KHSO₄). Figure 1 illustrates refine HTB structure.

For all radiotracers the optimum binding was achieved between 0.1 M to 1.0 M acid concentrations, and binding affinity generally decreased as acid concentrations increased. As electrolyte concentration increased, binding of radiotracer ion decreased significantly. Figure 2 illustrates selected data from these studies. Binding of Co^{2+} and Ce^{3+} in the presence of electrolyte varies significantly with type of cation and anion for all sorbents. However there appears to be no systematic relationship between Mo doping of HTB and metal ion binding. All radiotracers showed negligible binding to all sorbents in the presence of $KHSO₄$ and $BaCl₂$, suggesting these electrolytes could be employed for eluting the radiotracer. Collectively XRD, NPD and solution studies suggest that metal ion binding of the sorbents involves both cation exchange and/or redox mechanisms and the choice of anion may also play a significant role. We expect this knowledge will assist in the development of new strategies in sorbent design and synthesis.

.
Figure 1. The HTB possesses a rigid tungsten-oxygen framework built up of layers containing comer-shared WO_C
<u>octabedra</u> that are arranged in six <u>membered</u> rings.

Figure. 2. Effect of electrolyte (0.1 M) on binding of Co²⁺ and Ce³⁺ to HTB, Mo₁₀-HTB and Mo₂₀-HTB

Keywords: Separation, Inorganic Sorbents,Generator Materials

ABSTRACTS S15

EXPERIENCE WITH DOUBLE-GRID NIOBIUM [¹⁸O]H₂O TARGET FOR HIGH YIELD OF [¹⁸F]FLUORIDE PRODUCTION WITH **CYCLONE-30**

M.G. Hur,¹ S.W. Kim,¹ B.H. Hong,¹ J.S. Chai,¹ J.H. Park,¹ S.D. Yang,¹ K.H. Yu,² H.S. Oh.³

1 Laboratory of Cyclotron Application, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea; 2 Department of Chemistry, Dongguk University, Seoul, Republic of Korea; 3 Department of Mechanical Engineering, Kyunghee University, Yongin, Kyeonggi-do, Republic of Korea.

The 30 MeV cyclotron of Cyclone-30 was installed and in operation at KIRAMS in 2002 from IBA. Since installation, we have routinely produced F-18 on a daily basis and Tl-201, Ga-67 and I-123 on a weekly basis. Recently, we renovated the F-18 targetry system with double-grid target sealed with synthetic plastic (LDPE or HDPE) to increase beam current on target. In this study, we would like to describe the F-18 production yield increasing and pressure development depending on beam current.

The target was fabricated as shown in Fig. 1. The target body material used was titanium and foils were niobium. The total volume of cavity was 1.1 mL. Both open sides of cavity are blocked with 50 µm niobium foils without welding and PE was used for sealing material other than conventional Oring. Two aluminium grids are placed out side of each foil. Both sides of target were cooled directly by water flow. Grids were adapted to cool foils and prevent their thermal expansion under high pressure during bombardment. The bombarding energy on target was 15 MeV calculated using SRIM 2003 code. Approximately 80% of the incident beam current was bombarded on the target due to aluminium grid screening.

The beam current was increased to 45 µA starting from 5 µA. The pressure developed was plotted in Fig. 2. As shown in Fig. 2., the pressure was gradually developed and no burst until 45 µA. F-18 production yield were 4.0±0.2 Ci (n=10) after 120 min irradiation. This results show that the cooling performance of double-grid niobium target is better compare to conventional foil welded target and this target can be used for routine production of [18F]fluoride in high yield.

Keywords: Fluorine-18, Niobium, Grid Target

Figure 1, 3D drawing of target assembly(cross section)

Figure 2. Target pressure development depending on beam current.

J Label Compd. Radiopharm. 2005: 48: S1-S341

S16 ABSTRACTS

PREPARATION OF CYCLOTRON Re-186 AND COMPARISON WITH REACTOR Re-186 AND GENERATOR Re-188 FOR THE LABELING OF BOMBESIN

G.J. Ehrhardt,¹ M.E. Moustapha,¹ C.J. Smith,² L. Szajek,³ W.C. Eckelmann,³ S.S. Jurisson.¹ *1 Chemistry, University of Missouri, Columbia, MO, United States; 2 Radiology, Harry S. Truman Veterans' Hospital, Columbia, MO, United States; 3 Nuclear Medicine, National Institutes of Health, Bethesda, MD, United States.*

The radioisotopes Re-186 and Re-188 have been extensively investigated for various forms of radiotherapy due to their useful and high abundance beta particle emissions, low abundance and imageable gamma rays, and chemical resemblance to technetium. In addition, Re-188 is available in NCA (no carrier added) form from long lived W-188 generators, while Re-186 can produced in large quantities from reactors, albeit not in NCA form. However, NCA Re-186 can be produced by (p,n) reactions on W-186. The purpose of this study was to compare labeling of the peptide bombesin with these various forms of rhenium isotopes.

Cyclotron produced, NCA 186Re was separated radiochemically using high quality methyl ethyl ketone (MEK). The resulting ¹⁸⁶Re-MEK was then loaded into a small alumina column in order to purify the resulting ¹⁸⁶Re from any remaining ¹⁸⁶W. The yield of the separated ¹⁸⁶Re was 98%, while the radiochemical purity was found to be >99%. The experimental levels of impurities associated with ¹⁸⁶Re at the end of the separation process were found to be 5.7 x 10⁻⁶Ci ¹⁸²Re (0.57%, t_{1/2} = 12.7 h) and 1.283 x 10⁻⁵ Ci ^{182m}Re (1.28%, t_{1/2} = 2.67 d). The identities of the radionuclides were further confirmed from their decay half-lives using the decay equation. The radionuclidic purity of the separated ¹⁸⁶Re was found to be 99.6%. The chemical identity of the product ¹⁸⁶Re was determined by performing thin layer chromatography in both saline and acetone; both were found to be >99%. The radiochemical purity was further confirmed by HPLC, showing a peak at 2.85 min corresponding to perrhenate $(186¹⁸⁶*Re*O₄)$. The scale up to the production of multi-curie quantities of NCA ¹⁸⁶Re seems feasible due to the rapidity, simplicity, efficiency, and ease of operation, as well as radionuclidic purity, radiochemical purity and recovery of the isolated NCA ¹⁸⁶Re as a moderate energy b-particle emitting radionuclide with therapeutic potential.

 $186,188$ Re- N₃S-5Ava-BBN(7-14) NH₂ conjugates provide flexibility for designing $186,188$ Re labeled conjugates that retain high *in vitro* and *in vivo* specificity targeting of GRP receptor expressing cells. This study showed that the N₃S-5Ava-BBN(7-14) NH₂ could be labeled with^{186,188}Re following the preconjugation, post-metalation approach. The ^{186,188}Re^VO-N₃S-5Ava-BBN(7-14) NH₂ complexes were found to form stable complexes by the reduction of perrhenate $(Re^{VII}O₄)$ with stannous chloride at room temperature, as verified by HPLC and stability studies. The radiolabeling yield was found to be >99%. The HPLC chromatograms of $186,188$ Re-N₃S-BFC complexes revealed two peaks for each conjugate, reflecting the presence of *syn*-and *anti*-isomers, which were not resolvable by the HPLC elution method used. The biodistribution studies showed that the compounds were excreted through the renal and hepatobiliary systems, and demonstrated an average pancreas uptake of 8.15% ID/g. Administration of cold BBN effectively blocked pancreatic uptake and further reflects the high specificity this conjugate has for the GRP receptors.

At low radioactivity levels the effect of radiolysis was not detected. However, scale up may or may not elicit this effect. The pancreatic uptake of the Re-conjugate was found to be 7.6 \pm 1.8, 8.3 \pm 2.2 and 8.5 \pm 1.0 %ID/g for the NCA ¹⁸⁸Re-conjugate, carrier-added and NCA ¹⁸⁶Re conjugate, respectively, at 1 hour post-injection. The biodistribution studies demonstrated that the CA and NCA 186,188Re-conjugates behaved similarly.

Keywords: Rhenium-186, Bombesin, Radiotherapy

ABSTRACTS S17

IMPROVEMENT AND QUALITY CONTROL OF 62Zn/62Cu GENERATOR BASED ON CATION EXCHANGE METHODS

T. Fukumura,¹ K. Okada,^{1,2} R. Nakao,¹ H. Suzuki,^{1,2} K. Mukai,^{1,2} F. Szelecsenyi,³ Z. Kovacs,³ K. Suzuki.¹

1 Department of Medical Imaging, National Insutitute of Radiological Sciences, Chiba, Japan; 2 Japan Steel Works, Muroran, Japan; 3 Cyclotron Department, Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary.

Introduction: The generator nuclide ⁶²Cu (T_{1/2} = 9.7 min) is a suitable positron emitter for repeated PET study without a cyclotron. A $^{62}Zn^{62}Cu$ generator, which employs an anion exchange resin as a generator column [1], has been widely used as a ⁶²Cu source for the synthesis of useful ⁶²Culabeled radiopharmaceuticals, such as ^{62}Cu -PTSM [2, 3]. However, this generator had some disadvantages such as high osmotic pressure, low pH. Another type of ${}^{62}Zn{}^{62}Cu$ generator, which uses a strong cation exchange resin as a generator column and glycine (Gly) solution for the elution of ⁶²Cu, has been developed by Fujibayashi et al. [4]. This generator yields ⁶²Cu solutions with high elution efficiency under physiological conditions. However, the ⁶²Cu solution was contaminated by relatively large amount of ⁶²Zn (∼2.2%). We found that the ⁶²Cu elution efficiency and ⁶²Zn leakage level were highly improved using the Sep Pak CM cartridge, which is a silica based weak anion exchanger. Therefore, we applied this cartridge to the ⁶²Zn/⁶²Cu generator to establish a generator column. We report here the improved ⁶²Zn/⁶²Cu generator and its performance.

Methods: ${}^{62}Zn$ was produced using natural Cu as the target via the ${}^{na}Cu(p, xn)$ reaction. Irradiation was carried out with 30 MeV proton beam at a beam current of 10 µA for 1 hr. The irradiated Cu foil (2 g) was dissolved in c-HNO₃ (5 mL) then diluted with c-HCl (5mL) and pure H₂O (10 mL). The mixture was passed through an anion exchange column to separate ⁶²Zn from Cu. The column was washed with 2N HCl (20 mL), then 99.5% EtOH (20 mL) to remove Cu and HCl. ⁶²Zn was eluted from the column with H₂O. A ⁶²Zn/⁶²Cu generator was prepared by passing the ⁶²Zn solution through a Sep-Pak Plus Accell CM cartridge. The cartridge was washed with pure H₂O (10 mL) and 200 mM Gly (10 mL) to remove trace Cu.

Results and Discussion: The isolated ⁶²Zn solution was charged onto a Sep-Pak Plus CM cartridge with more than 99% efficiency. The generator performance was evaluated with various Gly concentrations. 62Cu was obtained with >96% efficiency using a small volume (1.5 mL) of 200 mM Gly solution. The maximal leakage of ⁶²Zn was observed in the first fraction (ca 0.1%), however, ⁶²Zn breakthrough decreased to less than 0.01% with repeated elution. The breakthrough level of ⁶²Zn was followed up to 50 elutions, however, ^{62}Zn breakthrough was retained at the same level. Radionuclidic purity of the ⁶²Cu solution was greater than 99.9%. Carrier Cu contamination level was less than 1 ppm and other metal contaminants of $\rm Zn^{2+}$, $\rm Co^{2+}$, $\rm Ni^{2+}$ were under detection level (<0.05 ppm) on radio ion chromatogram. ⁶²Cu-ATSM was prepared with more than 95% radiochemical purity and specific activity of 480 GBq/µmol using the obtained 62 Cu solutions.

Conclusion: The present study showed that the ⁶²Zn/⁶²Cu generator using a weak anion exchanger of Sep-Pak CM cartridge had a superior performance compared to that of the previous methods. References

[1] Bormans G., Janssen A., Adriaens P. et al., Appl. Radiat Isot., 43 1437-41 (1992).

[2] Green M. A., Mathias C. J., Welch M. J. et al., J. Nucl. Med. 31, 1989-96 (1990).

[3] Haynes N.G., Lacy J.L., Nayak N. et al., J. Nucl. Med. 41, 309-14 (2000).

[4] Fujibayashi Y., Matsumoto K., Yonekura Y. et al., J. Nucl. Med. 30, 1838-42 (1989).

Keywords: 62Zinc-62/Copper-62 Generator, Weak Cation Exchanger, Generator

S18 ABSTRACTS

ACHIEVEING HIGH (APPARENT) SPECIFIC ACTIVITY FORMULATIONS USING FLUOROUS-PHASE CHEMISTRY

A.C. Donovan,¹ J. Forbes,¹ J.W. Babich,² J.F. Valliant.¹

1 Department of Chemistry, McMaster University, Hamilton, ON, Canada; 2 Molecular Insight Pharmaceuticals Inc., Cambridge, MA, United States.

Modern radiotracers are often designed in such a manner that the parent ligand and the radiolabeled compound have similar affinities for the biological target. In many cases it is necessary to remove the large excess of unlabeled ligand that is present after labeling so that it will not interfere with ability of the tracer to bind to the target. Furthermore, for animal imaging studies, residual ligand can have serious consequences in terms of the health of the subject.

The removal of unlabeled ligand for research studies is traditionally done using HPLC. More recently a raft of solid-phase labeling techniques were developed in which a substrate is bound to an insoluble support in such a manner that upon reaction with the radioisotope only the desired compound is released into solution. We have developed a new radiolabeling strategy in which the unlabeled ligand can be easily removed without requiring the use of HPLC or polymer-supported substrates. This new solution phase approach avoids the numerous limitations associated with using solid-supports.

The new strategy, which unlike solid-phase methods allows for purification of all precursors, is based on the use of soluble fluorous-phase supports.¹ Aryl-stannanes containing perfluorooctyl chains were synthesized, iodinated and purified using simple solid-phase extraction procedures. The solidphase material is designed to retain the starting material and other highly fluorous substrates, while allowing the desired products to be eluted selectively.

The feasibility of the fluorous labeling system was examined using derivatives of benzoic acid that were labeled with 125I. The precursors were synthesized using standard synthetic strategies, purified by preparative HPLC and characterized by normal spectroscopic techniques. A series of oxidants were examined and Iodogen was found to give the highest yields of the desired products.2 Radiochemical yields of 3- and 4-iodobenzoic acid, for example, were greater than 96% with purity greater than 99%. The range of substrates tagged using the fluorous labeling methodology and its utility in the radiopharmaceutical discovery process will be presented.

References.

1. Curran, D. P. *Angew. Chem. Int. Ed.* **1999**, *37*, 1174.

2. J. Koziorowski, C. Henssen, R. Weinreich, *Appl. Radiat. Isot*. **1998**, *49*, 955.

Keywords: Fluorous, Iodine-125, Radiopharmaceutical Production